10.3 Coefficient of Determination $\sum (y - \overline{y})^2$

Bluman, Chapter 10

10.3 Coefficient of Determination The total variation $\sum_{y \in \overline{y}} (y - \overline{y})^2$ is the sum of the squares of the vertical distances each point is from the mean.

The total variation can be divided into two parts: that which is attributed to the relationship of x and y, and that which is due to chance.

Variation

 $\sum \left(y' - \overline{y} \right)^2$

Variation The variation obtained from the relationship (i.e., from the predicted y'values) is $\sum (y' - \overline{y})^2$ and is called the explained variation.

• Variation due to chance, found by $\sum_{x} (y' - y)^2$, is called the **unexplained** variation. This variation cannot be attributed to the relationships.

Variation

Δ

The symbol for the coefficient of determination is r².

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

The symbol for the coefficient of determination is r².

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

The symbol for the coefficient of determination is r².

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

The symbol for the coefficient of determination is r².

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

Another way to arrive at the value for r² is to square the correlation coefficient.

Coefficient of Nondetermination The coefficient of nondetermination is a measure of the unexplained variation. The formula for the coefficient of determination is 1.00 – r².

Standard Error of the Estimate The standard error of estimate, denoted by s_{est} is the standard deviation of the observed y values about the predicted y' values. The formula for the standard error of estimate is:

$$s_{est} = \sqrt{\frac{\sum (y - y')^2}{n - 2}}$$

Chapter 10 Correlation and Regression

Section 10-3 Example 10-12 Page #569

A researcher collects the following data and determines that there is a significant relationship between the age of a copy machine and its monthly maintenance cost. The regression equation is y' = 55.57 + 8.13x. Find the standard error of the estimate.

Machine	Age x (years)	Monthly cost y		
А	1	\$ 62		
В	2	78		
С	3	70		
D	4	90		
E	4	93		
F	6	103		

Machine	Age x (years)	Monthly cost, <i>y</i>	У′	<i>y</i> – <i>y</i> ′	$(y - y')^2$
А	1	62			
В	2	78			
С	3	70			
D	4	90			
Е	4	93			
F	6	103			

	Age x	Monthly
Machine	(years)	cost, y
А	1	62
В	2	78
С	3	70
D	4	90
E	4	93
F	6	103

$$y'' y - y' (y - y')^2$$

$$y' = 55.57 + 8.13x$$

$$y' = 55.57 + 8.13(1) = 63.70$$

$$y' = 55.57 + 8.13(2) = 71.83$$

$$y' = 55.57 + 8.13(3) = 79.96$$

$$y' = 55.57 + 8.13(4) = 88.09$$

$$y' = 55.57 + 8.13(6) = 104.35$$

Bluman, Chapter 10

Machine	Age <i>x</i> (years)	Monthly cost, <i>y</i>	у [′]	y – y '	(y – y [']) ²
А	1	62	63.70		
В	2	78	71.83		
С	3	70	79.96		
D	4	90	88.09		
E	4	93	88.09		
F	6	103	104.35		

$$y' = 55.57 + 8.13x$$

$$y' = 55.57 + 8.13(1) = 63.70$$

$$y' = 55.57 + 8.13(2) = 71.83$$

$$y' = 55.57 + 8.13(3) = 79.96$$

$$y' = 55.57 + 8.13(4) = 88.09$$

$$y' = 55.57 + 8.13(6) = 104.35$$

Bluman, Chapter 10

Machine	Age <i>x</i> (years)	Monthly cost, <i>y</i>	У′	<i>y</i> – <i>y</i> ′	$(y - y')^2$
А	1	62	63.70		
В	2	78	71.83		
С	3	70	79.96		
D	4	90	88.09		
Е	4	93	88.09		
F	6	103	104.35		

Machine	Age <i>x</i> (years)	Monthly cost, <i>y</i>	у′	<i>y</i> – <i>y</i> ′	$(y - y')^2$
А	1	62	63.70	-1.70	
В	2	78	71.83	6.17	
С	3	70	79.96	-9.96	
D	4	90	88.09	1.91	
Е	4	93	88.09	4.91	
F	6	103	104.35	-1.35	

Machine	Age <i>x</i> (years)	Monthly cost, <i>y</i>	у′	y – y '	$(y - y')^2$
А	1	62	63.70	-1.70	2.89
В	2	78	71.83	6.17	38.0689
С	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225

Machine	Age x (years)	Monthly cost, <i>y</i>	у′	y – y '	$(y - y')^2$
А	1	62	63.70	-1.70	2.89
В	2	78	71.83	6.17	38.0689
С	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
Е	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225

169.7392

Machine	Age x (years)	Monthly cost, <i>y</i>	у′	y – y '	$(y - y')^2$
А	1	62	63.70	-1.70	2.89
В	2	78	71.83	6.17	38.0689
С	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
Е	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225

169.7392

$$s_{est} = \sqrt{\frac{\sum (y - y')^2}{n - 2}}$$

Machine	Age x (years)	Monthly cost, <i>y</i>	у′	y – y '	$(y - y')^2$
А	1	62	63.70	-1.70	2.89
В	2	78	71.83	6.17	38.0689
С	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225

169.7392

$$s_{est} = \sqrt{\frac{\sum (y - y')^2}{n - 2}}$$
$$s_{est} = \sqrt{\frac{169.7392}{4}} = 6.51$$

Chapter 10 Correlation and Regression

Section 10-3 Example 10-13 Page #570

$$s_{est} = \sqrt{\frac{\sum y^2 - a \sum y - b \sum xy}{n-2}}$$

y²

	Age x	Monthly	
Machine	(years)	cost, y	хy
А	1	62	
В	2	78	
С	3	70	
D	4	90	
Е	4	93	
F	6	103	

	Age x	Monthly		
Machine	(years)	cost, y	ху	у ²
А	1	62	62	
В	2	78	156	
С	3	70	210	
D	4	90	360	
Е	4	93	372	
F	6	103	618	

Machine	Age <i>x</i> (years)	Monthly cost, <i>y</i>	xy	y ²
А	1	62	62	3,844
В	2	78	156	6,084
С	3	70	210	4,900
D	4	90	360	8,100
Е	4	93	372	8,649
F	6	103	618	10,609

Machine	Age x (years)	Monthly cost, <i>y</i>	ху	y ²
А	1	62	62	3,844
В	2	78	156	6,084
С	3	70	210	4,900
D	4	90	360	8,100
Е	4	93	372	8,649
F	6	103	618	10,609
		496		

Machine	Age x (years)	Monthly cost, <i>y</i>	xy	у ²
А	1	62	62	3,844
В	2	78	156	6,084
С	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609
		496	1778	

	Age x	Monthly		
Machine	(years)	cost, y	ху	у ²
А	1	62	62	3,844
В	2	78	156	6,084
С	3	70	210	4,900
D	4	90	360	8,100
Е	4	93	372	8,649
F	6	103	618	10,609
		496	1778	42,186

	Age x	Monthly		0
Machine	(years)	cost, y	ху	У ²
А	1	62	62	3,844
В	2	78	156	6,084
С	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609
		496	1778	42,186

$$s_{est} = \sqrt{\frac{\sum y^2 - a \sum y - b \sum xy}{n-2}}$$

Formula for the Prediction Interval about a Value *y* '

Formula for the Prediction Interval about a Value *y* '

Friday, January 25, 13

Chapter 10 Correlation and Regression

Section 10-3 Example 10-14 Page #571

Bluman, Chapter 10

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find

Step 2: Find *y*′ *for x* = 3.

Step 3: Find s_{est} .

(as shown in Example 10-13)

Bluman, Chapter 10

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^2$, and \overline{X} .

Step 2: Find *y*′ *for x* = 3.

Step 3: Find s_{est} .

(as shown in Example 10-13)

Bluman, Chapter 10

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find
$$\sum x, \sum x^2$$
, and \overline{X} .
 $\sum x = 20$ $\sum x^2 = 82$ $\overline{X} = \frac{20}{6} = 3.3$

Step 2: Find *y*′ *for x* = 3.

Step 3: Find s_{est} .

(as shown in Example 10-13)

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find
$$\sum x, \sum x^2$$
, and \overline{X} .
 $\sum x = 20$ $\sum x^2 = 82$ $\overline{X} = \frac{20}{6} = 3.3$

Step 2: Find *y*' *for x* = 3.

$$y' = 55.57 + 8.13(3) = 79.96$$

Step 3: Find s_{est} .

(as shown in Example 10-13)

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find
$$\sum x, \sum x^2$$
, and \overline{X} .
 $\sum x = 20$ $\sum x^2 = 82$ $\overline{X} = \frac{20}{6} = 3.3$

Step 2: Find *y*' *for x* = 3.

$$y' = 55.57 + 8.13(3) = 79.96$$

For the data in Example 10–12, find the 95% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find
$$\sum x, \sum x^2$$
, and \overline{X} .
 $\sum x = 20$ $\sum x^2 = 82$ $\overline{X} = \frac{20}{6} = 3.3$

Step 2: Find *y*' *for x* = 3.

$$y' = 55.57 + 8.13(3) = 79.96$$

Step 3: Find s_{est}.

$$s_{est} = 6.48$$
 (as shown in Example 10-13)

Step 4: Substitute in the formula and solve.

Step 4: Substitute in the formula and solve.

$$y' - t_{\alpha/2} s_{est} \sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n\sum x^2 - (\sum x)^2}} < y$$

$$< y' + t_{\alpha/2} s_{est} \sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n\sum x^2 - (\sum x)^2}}$$

Step 4: Substitute in the formula and solve.

$$y' - t_{\alpha/2}s_{est}\sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n\sum x^2 - (\sum x)^2}} < y$$

$$< y' + t_{\alpha/2}s_{est}\sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n\sum x^2 - (\sum x)^2}}$$

$$79.96 - (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}} < y$$

$$< 79.96 + (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}} < y$$

Step 4: Substitute in the formula and solve.

Step 4: Substitute in the formula and solve.

$$79.96 - (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}} < y$$
$$< 79.96 + (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}}$$

Step 4: Substitute in the formula and solve.

$$79.96 - (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}} < y$$

$$< 79.96 + (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}}$$

$$79.96 - 19.43 < y < 79.96 + 19.43$$

$$60.53 < y < 99.39$$

Step 4: Substitute in the formula and solve.

$$79.96 - (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}} < y$$

$$< 79.96 + (2.776)(6.48)\sqrt{1 + \frac{1}{6} + \frac{6(3 - 3.3)^2}{6(82) - (20)^2}}$$

$$79.96 - 19.43 < y < 79.96 + 19.43$$

60.53 < *y* < 99.39

Hence, you can be 95% confident that the interval 60.53 < y < 99.39 contains the actual value of *y*.