10.3 Coefficient of Determination $\sum(y-\bar{y})^{2}$

10.3 Coefficient of Determination - The total variation $\sum(y-\bar{y})^{2}$ is the sum of the squares of the vertical distances each point is from the mean.

- The total variation can be divided into two parts: that which is attributed to the relationship of x and y, and that which is due to chance.

Variation

$$
\sum\left(y^{\prime}-\bar{y}\right)^{2}
$$

Variation

- The variation obtained from the relationship (i.e., from the predicted y^{\prime} values) is $\sum\left(y^{\prime}-\bar{y}\right)^{2}$ and is called the explained variation.
- Variation due to chance, found by $\sum\left(y^{\prime}-y\right)^{2}$, is called the unexplained variation. This variation cannot be attributed to the relationships.

Variation

Bluman, Chapter 10

Coefficient of Determiation

- The coefficient of determination is the ratio of the explained variation to the total variation.

Coefficient of Determiation

- The coefficient of determination is the ratio of the explained variation to the total variation.
- The symbol for the coefficient of determination is r^{2}.
$r^{2}=\frac{\text { explained variation }}{\text { total variation }}$

Coefficient of Determiation

- The coefficient of determination is the ratio of the explained variation to the total variation.
- The symbol for the coefficient of determination is r^{2}.

$$
r^{2}=\frac{\text { explained variation }}{\text { total variation }}
$$

Coefficient of Determiation

- The coefficient of determination is the ratio of the explained variation to the total variation.
- The symbol for the coefficient of determination is r^{2}.

$$
r^{2}=\frac{\text { explained variation }}{\text { total variation }}
$$

Coefficient of Determiation

- The coefficient of determination is the ratio of the explained variation to the total variation.
- The symbol for the coefficient of determination is r^{2}.

$$
r^{2}=\frac{\text { explained variation }}{\text { total variation }}
$$

- Another way to arrive at the value for r^{2} is to square the correlation coefficient.

Coefficient of Nondetermiation

- The coefficient of nondetermination is a measure of the unexplained variation.
- The formula for the coefficient of determination is $1.00-r^{2}$.

Standard Error of the Estimate

 - The standard error of estimate, denoted by $s_{\text {est }}$ is the standard deviation of the observed y values about the predicted y^{\prime} values. The formula for the standard error of estimate is:$$
s_{e s t}=\sqrt{\frac{\sum\left(y-y^{\prime}\right)^{2}}{n-2}}
$$

Chapter 10 Correlation and Regression

Section 10-3

Example 10-12
Page \#569

Example 10-12: Copy Machine Costs

A researcher collects the following data and determines that there is a significant relationship between the age of a copy machine and its monthly maintenance cost. The regression equation is $y^{\prime}=55.57+8.13 x$. Find the standard error of the estimate.

Machine	Age \boldsymbol{x} (years)	Monthly cost \boldsymbol{y}
A	1	$\$ 62$
B	2	78
C	3	70
D	4	90
E	6	93
F		103

Example 10-12: Copy Machine Costs

Machine x	Monthly (years) cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$	
A	1	62			
B	2	78			
C	3	70			
D	4	90			
E	4	93			
F	6	103			

Example 10-12: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62			
B	2	78			
C	3	70			
D	4	90			
E	4	93			
F	6	103			
$y^{\prime}=55.57+8.13 x$					
$y^{\prime}=55.57+8.13(1)=63.70$					
$y^{\prime}=55.57+8.13(2)=71.83$					
$y^{\prime}=55.57+8.13(3)=79.96$					
$y^{\prime}=55.57+8.13(4)=88.09$					
$y^{\prime}=55.57+8.13(6)=104.35$					

Example 10-12: Copy Machine Costs

| Machine | Age x
 (years) | Monthly
 cost, y | y^{\prime} |
| :---: | :---: | :---: | :---: |$\quad y-y^{\prime} \quad\left(y-y^{\prime}\right)^{2}$

Example 10-12: Copy Machine Costs

	Age x	Monthly Machine (years)	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62	63.70		
B	2	78	71.83		
C	3	70	79.96		
D	4	90	88.09		
E	4	93	88.09		
F	6	103	104.35		

Example 10-12: Copy Machine Costs

| | Age x | Monthly
 Machine
 (years) |
 cost, y | y^{\prime} | $y-y^{\prime}$ |
| :---: | :---: | :---: | :---: | ---: | ---: |$\quad\left(y-y^{\prime}\right)^{2}$

Example 10-12: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62	63.70	-1.70	2.89
B	2	78	71.83	6.17	38.0689
C	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225

Example 10-12: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62	63.70	-1.70	2.89
B	2	78	71.83	6.17	38.0689
C	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225
					169.7392

Example 10-12: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62	63.70	-1.70	2.89
B	2	78	71.83	6.17	38.0689
C	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225
			$s_{\text {est }}=\sqrt{\frac{\sum\left(y-y^{\prime}\right)^{2}}{n-2}}$		

Example 10-12: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	y^{\prime}	$y-y^{\prime}$	$\left(y-y^{\prime}\right)^{2}$
A	1	62	63.70	-1.70	2.89
B	2	78	71.83	6.17	38.0689
C	3	70	79.96	-9.96	99.2016
D	4	90	88.09	1.91	3.6481
E	4	93	88.09	4.91	24.1081
F	6	103	104.35	-1.35	1.8225
					169.7392
				$\frac{\sum(y-y)}{n-2}$	
			$S_{\text {est }}$	$\frac{169.7392}{4}$	6.51

Chapter 10 Correlation and Regression

Section 10-3

Example 10-13
Page \#570

Example 10-13: Copy Machine Costs

$$
s_{e s t}=\sqrt{\frac{\sum y^{2}-a \sum y-b \sum x y}{n-2}}
$$

Example 10-13: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	$x y$	y^{2}
A	1	62		
B	2	78		
C	3	70		
D	4	90		
E	4	93		
F	6	103		

Example 10-13: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	$x y$	y^{2}
A	1	62	62	
B	2	78	156	
C	3	70	210	
D	4	90	360	
E	4	93	372	
F	6	103	618	

Example 10-13: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	$x y$	y^{2}
A	1	62	62	3,844
B	2	78	156	6,084
C	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609

Example 10-13: Copy Machine Costs

	Age x (years)	Monthly cost, y	$x y$	y^{2}
Machine		62	3,844	
A	1	62	156	6,084
B	2	78	210	4,900
C	3	70	360	8,100
D	4	90	372	8,649
E	4	93	618	10,609
F	6	103		

Example 10-13: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	$x y$	y^{2}
A	1	62	62	3,844
B	2	78	156	6,084
C	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609
		496	1778	

Example 10-13: Copy Machine Costs

Machine	Age x (years)	Monthly cost, y	$x y$	y^{2}
A	1	62	62	3,844
B	2	78	156	6,084
C	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609
		496	1778	42,186

Example 10-13: Copy Machine Costs

Age $x \quad$ Monthly

Machine	(years)	cost, y	$x y$	y^{2}
A	1	62	62	3,844
B	2	78	156	6,084
C	3	70	210	4,900
D	4	90	360	8,100
E	4	93	372	8,649
F	6	103	618	10,609
		496	1778	42,186

$$
s_{e s t}=\sqrt{\frac{\sum y^{2}-a \sum y-b \sum x y}{n-2}}
$$

Example 10-13: Copy Machine Costs

$$
\begin{aligned}
& \text { Age } x \quad \text { Monthly } \\
& s_{e s t}=\sqrt{\frac{\sum y^{2}-a \sum y-b \sum x y}{n-2}} \\
& s_{e s t}=\sqrt{\frac{42,186-55.57(496)-8.13(1778)}{4}}=6.48
\end{aligned}
$$

Formula for the Prediction Interval about a Value y^{\prime}

Formula for the Prediction Interval about a Value y^{\prime}

$$
\begin{aligned}
y^{\prime}-t_{\alpha / 2} s_{e s t} & \sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum x^{2}-\left(\sum x\right)^{2}}}<y \\
& <y^{\prime}+t_{\alpha / 2} s_{e s t} \sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum x^{2}-\left(\sum x\right)^{2}}}
\end{aligned}
$$

with d.f. $=n-2$

Chapter 10 Correlation and Regression

Section 10-3

Example 10-14
Page \#571

Example 10-14: Copy Machine Costs

 For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.Step 1: Find

Step 2: Find y^{\prime} for $x=3$.

Step 3: Find $s_{\text {est }}$.
(as shown in Example 10-13)

Example 10-14: Copy Machine Costs

For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^{2}$, and \bar{X}.

Step 2: Find y^{\prime} for $x=3$.

Step 3: Find $s_{\text {est }}$.

(as shown in Example 10-13)

Example 10-14: Copy Machine Costs

For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^{2}$, and \bar{X}.

$$
\sum x=20 \quad \sum x^{2}=82 \quad \bar{X}=\frac{20}{6}=3.3
$$

Step 2: Find y^{\prime} for $x=3$.

Step 3: Find $s_{\text {est }}$.

(as shown in Example 10-13)

Example 10-14: Copy Machine Costs

For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^{2}$, and \bar{X}.

$$
\sum x=20 \quad \sum x^{2}=82 \quad \bar{X}=\frac{20}{6}=3.3
$$

Step 2: Find y^{\prime} for $x=3$.

$$
y^{\prime}=55.57+8.13(3)=79.96
$$

Step 3: Find $s_{\text {est }}$.
(as shown in Example 10-13)

Example 10-14: Copy Machine Costs

For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^{2}$, and \bar{X}.

$$
\sum x=20 \quad \sum x^{2}=82 \quad \bar{X}=\frac{20}{6}=3.3
$$

Step 2: Find y^{\prime} for $x=3$.

$$
y^{\prime}=55.57+8.13(3)=79.96
$$

Example 10-14: Copy Machine Costs

For the data in Example 10-12, find the 95\% prediction interval for the monthly maintenance cost of a machine that is 3 years old.

Step 1: Find $\sum x, \sum x^{2}$, and \bar{X}.

$$
\sum x=20 \quad \sum x^{2}=82 \quad \bar{X}=\frac{20}{6}=3.3
$$

Step 2: Find y^{\prime} for $x=3$.

$$
y^{\prime}=55.57+8.13(3)=79.96
$$

Step 3: Find $s_{\text {est }}$.

$$
s_{\text {est }}=6.48 \quad \text { (as shown in Example 10-13) }
$$

Example 10-14: Copy Machine Costs Step 4: Substitute in the formula and solve.

Example 10-14: Copy Machine Costs

Step 4: Substitute in the formula and solve.

$$
\begin{aligned}
& y^{\prime}-t_{\alpha / 2} S_{\text {est }} \sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum^{2} x^{2}-\left(\sum x\right)^{2}}}<y \\
& <y^{\prime}+t_{\alpha / 2} S_{\text {est }} \sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum x^{2}-\left(\sum x\right)^{2}}}
\end{aligned}
$$

Example 10-14: Copy Machine Costs

Step 4: Substitute in the formula and solve.

$$
\begin{aligned}
& \begin{array}{l}
y^{\prime}-t_{\alpha / 2} s_{\text {est }} \\
\sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum x^{2}-\left(\sum x\right)^{2}}}<y \\
\quad<y^{\prime}+t_{\alpha / 2} S_{\text {est }} \sqrt{1+\frac{1}{n}+\frac{n(x-\bar{X})^{2}}{n \sum x^{2}-\left(\sum x\right)^{2}}} \\
79.96-(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}<y
\end{array} \\
& <79.96+(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}
\end{aligned}
$$

Example 10-14: Copy Machine Costs Step 4: Substitute in the formula and solve.

Example 10-14: Copy Machine Costs

Step 4: Substitute in the formula and solve.

$$
\begin{aligned}
79.96 & -(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}<y \\
& <79.96+(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}
\end{aligned}
$$

Example 10-14: Copy Machine Costs

Step 4: Substitute in the formula and solve.

$$
\begin{aligned}
79.96- & (2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}<y \\
& <79.96+(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
79.96-19.43 & <y<79.96+19.43 \\
60.53 & <y<99.39
\end{aligned}
$$

Example 10-14: Copy Machine Costs

Step 4: Substitute in the formula and solve.

$$
\begin{aligned}
& 79.96-(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}}<y \\
&<79.96+(2.776)(6.48) \sqrt{1+\frac{1}{6}+\frac{6(3-3.3)^{2}}{6(82)-(20)^{2}}} \\
& 79.96-19.43<y<79.96+19.43 \\
& 60.53<y<99.39
\end{aligned}
$$

Hence, you can be 95% confident that the interval $60.53<y<99.39$ contains the actual value of y.

