Sec 9.5
Applications of Trigonometry to Navigation and Surveying
Which direction?

- In basic Trig... standard position:

 Start on the x-axis. Counter clockwise
Which direction?

- Navigation... used by ships, planes etc.

Start on the y-axis.
Clockwise
Given using 3 digits
9.5 Applications of Trigonometry to Navigation and Surveying

Objective

To use trigonometry to solve navigation and surveying problems.

The course of a ship or plane is the \angle, measured clockwise, from the north direction to the direction of the ship or plane.

The course of ship $= 110^\circ$
9.5 Applications of Trigonometry to Navigation and Surveying

Objective

To use trigonometry to solve navigation and surveying problems.

The course of a ship or plane is the \angle, measured clockwise, from the north direction to the direction of the ship or plane.
Objective

To use trigonometry to solve navigation and surveying problems.

The course of a ship or plane is the angle, measured clockwise, from the north direction to the direction of the ship or plane.

Bearing of B from $A =$

Bearing of A from $B =$

The course of a ship or plane is the angle, measured clockwise, from the north direction to the direction of the ship or plane.
Example 1. A ship proceeds on a course of 300º for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230º, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?

Make a diagram
Always measure clockwise
A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from the starting point?

Law of Cosines

\[(OPP)^2 = (ADJ_1)^2 + (ADJ_2)^2 - 2(ADJ_1)(ADJ_2)\cos(\angle) \]
Law of Cosines

\[(OPP)^2 = (ADJ_1)^2 + (ADJ_2)^2 - 2(ADJ_1)(ADJ_2)\cos(\angle) \]
Which direction?

- In surveying, a compass reading is usually given as an acute angle from the north-south line toward the east or west line.

a) Start on the y-axis.

b) Clockwise

c) The angle is always acute.
In surveying, a compass reading is usually given as an acute \(\angle \) from the north-south line toward the east or west.
Azimuths

<table>
<thead>
<tr>
<th>Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>315°</td>
</tr>
<tr>
<td>270°</td>
</tr>
<tr>
<td>225°</td>
</tr>
<tr>
<td>180°</td>
</tr>
<tr>
<td>135°</td>
</tr>
<tr>
<td>90°</td>
</tr>
<tr>
<td>45°</td>
</tr>
</tbody>
</table>

Bearings

<table>
<thead>
<tr>
<th>Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 45° W</td>
</tr>
<tr>
<td>N 45° E</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>S 45° W</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>S 45° E</td>
</tr>
</tbody>
</table>

Navigation

Surveying
NE Sandy and NE 40th meet at approx 58 degree angle.

Give directions from the Formation Area to the disband Area.

a) Using navigation system.

b) Using the survey method.
Basic Hints and rules

- Make a diagram... give yourself drawing space *all* around the diagram.
- Although drawing to scale might be hard, come as close to a scale as possible.
- Write all the given information on your diagram.
Basic Hints and rules

• Include a lightly drawn x and y axes at each point.
• Find as many angles and sides as you can.
• Apply as many geometry rules as you can.
18 meters Reference

2 Degree difference
Camping:

Give direction from the camp site to each of 4 points of interest:

a) The river
b) The lake
c) To the tower
d) The hill
Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

With these types of problems, a careful diagram is essential. Next slide will demonstrate all the steps. Make sure to have your geometric tools and math wits about you!
area of $\triangle GQS = 35,561.49$

area of $\triangle GRS = 49,289.63$

TOTAL: $84,851.12$
A plot of land is taxed according to its area. Sketch the plot of land described, then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

\[
k = \frac{1}{2} ab \sin C
\]
500 m NE;

15. **Triangulate**

\[d \approx \]

\[\sin \theta = \frac{200}{200} = \]

\[m \angle \alpha = \]

\[K_2 = \]

\[d^2 = \]

Law of Sines

\[\angle \theta = 15^\circ \]

\[90^\circ \]

\[300 \text{ m} \]

\[200 \text{ m} \]

\[500 \text{ m} \]

\[45^\circ \]

\[K_1 = \]

\[\text{Area} \approx \]
260 m SW; 240 m S; 280 m N 40° E; Back

\[d \approx \]

\[\frac{\sin \theta}{240} = \]

\[K = \]

\[d^2 = \]

\[K = \]

\[\text{Area} \approx \]
Proceed S78 W for 250 m.
Then S15 E for 180 m.
Then N78 E.
Then N30 E to the starting point.

\[
\frac{\sin \theta}{180} = \frac{\sin 87^\circ}{300.32}
\]

\[
(d_3)^2 = \frac{d_1}{\sin 11.2^\circ} = \frac{300.32}{\sin 132^\circ}
\]

\[
K_1 + K_2 \approx
\]
• **click here for a sample test**
Homework:

- Sec 9.5 written exercises
- 7-13 odds; 15, 16, 17

In class Exit Slip:

- Page 353 Problem #17.
- Only full solutions will be considered.

If you were absent, see Navi for make up Exit Slip.
Applications of Trig to Navigation and Surveying

The course of a ship or plane is the angle, measured clockwise, from the north direction to the direction of the ship or plane.

- Course of ship: 110°
- Course of plane: 270°
As shown, the compass bearing of one location from another is measured in the same way. Note that compass bearings and courses are given with three digits, such as 060° rather than 60°.

bearing of B from $A = 060°$
bearing of A from $B = 240°$
Example 1. A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?
Example 1. A ship proceeds on a course of 300º for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230º, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?

Make a diagram

The ship travels first along a path of length 2 \cdot 15 = 30 nautical miles and then along a path of length 3 \cdot 15 = 45 nautical miles. The angle between the two paths is 110º. (You can find this angle by drawing north-south lines and using geometry.) To find \(x \), the distance of the ship from its starting point, use the law of cosines:

\[
x^2 = 30^2 + 45^2 - 2 \cdot 30 \cdot 45 \cdot \cos 110º \approx 3848
\]

Thus, \(x \approx \sqrt{3848} \approx 62.0 \) nautical miles.
Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

From the bearings given, we deduce that:

\[\angle PQR = 90^\circ + 32^\circ = 122^\circ \]
\[\angle QRS = 180^\circ - (32^\circ + 68^\circ) = 80^\circ \]

To find the area of \(PQRS \), we divide the quadrilateral into two triangles by introducing \(PR \). Area of \(\triangle PQR = \frac{1}{2} \cdot PQ \cdot QR \cdot \sin Q \)

\[= \frac{1}{2} \cdot 195 \cdot 260 \cdot \sin 122^\circ \approx 21,500 \text{ ft}^2 \]

To find \(PR \), we use the law of cosines:

\[PR^2 = 195^2 + 260^2 - 2 \cdot 195 \cdot 260 \cdot \cos 122^\circ \approx 159,000 \]
\[PR \approx 399 \text{ ft.} \]

To find \(\anglePRS \), we find \(\angle PRQ \) by the law of sines:

\[\frac{\sin PRQ}{195} = \frac{\sin 122^\circ}{399} \]
\[\sin PRQ = \frac{195 \sin 122^\circ}{399} \]
\[\angle PRQ \approx 24.5^\circ \]

Therefore, \(\anglePRS = \angleQRS - \anglePRQ \approx 80^\circ - 24.5^\circ = 55.5^\circ \).

Area of \(\triangle PRS = \frac{1}{2} \cdot PR \cdot RS \cdot \sin PRS \approx \frac{1}{2} \cdot 399 \cdot 385 \cdot \sin 55.5^\circ \approx 63,300 \text{ ft}^2 \)

Area of quadrilateral \(PQRS = \text{area of } \triangle PQR + \text{area of } \triangle PRS \approx 21,500 + 63,300 \]
\[= 84,800 \text{ ft}^2 \]
Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

From the bearings given, we deduce that:

\[\angle PQR = 90° + 32° = 122° \]
\[\angle QRS = 180° - (32° + 68°) = 80° \]

To find the area of \(PQRS \), we divide the quadrilateral into two triangles by introducing \(PR \).

Area of \(\triangle PQR \)

\[\frac{1}{2} \cdot PQ \cdot QR \cdot \sin Q \]
\[\frac{1}{2} \cdot 195 \cdot 260 \cdot \sin 122° \approx 21,500 \text{ ft}^2 \]

To find \(PR \), we use the law of cosines:

\[PR^2 = 195^2 + 260^2 - 2 \cdot 195 \cdot 260 \cdot \cos 122° \approx 159,000 \]
\[PR \approx 399 \text{ ft.} \]

To find \(\angle PRS \), we find \(\angle PRQ \) by the law of sines:

\[\frac{\sin PRQ}{195} = \frac{\sin 122°}{399} \]
\[\sin PRQ = \frac{195 \sin 122°}{399} \]
\[\angle PRQ \approx 24.5° \]

Therefore, \(\angle PRS = \angle QRS - \angle PRQ \approx 80° - 24.5° = 55.5° \).

Area of \(\triangle PRS \)

\[\frac{1}{2} \cdot PR \cdot RS \cdot \sin PRS \approx \frac{1}{2} \cdot 399 \cdot 385 \cdot \sin 55.5° \approx 63,300 \text{ ft}^2 \]

Area of quadrilateral \(PQRS \) = area of \(\triangle PQR \) + area of \(\triangle PRS \)

\[\approx 21,500 + 63,300 \]
\[= 84,800 \text{ ft}^2 \]