Sec 9.5

Applications of Trigonometry to Navigation and Surveying

Which direction?

• In basic Trig... standard position:

Start on the x-axis. Counter clockwise

Which direction?

• Navigation... used by ships, planes etc.

Start on the y-axis. Clockwise Given using 3 digits

9.5 Applications of Trigonometry to Navigation and Surveying

Objective

To use trigonometry to solve navigation and surveying problems.

The course of a ship or plane is the \angle , measured clockwise, from the north direction to the direction of the ship or plane.

9.5 Applications of Trigonometry to Navigation and Surveying *Objective*

To use trigonometry to solve navigation and surveying problems.

The course of a ship or plane is the \angle , measured clockwise, from the north direction to the direction of the ship or plane.

Objective

To use trigonometry to solve navigation and surveying problems.

Bearing of *B* from A =Bearing of *A* from B =

The course of a ship or plane is the \angle , measured clockwise, from the north direction to the direction of the ship or plane.

Example 1. A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?

Make a diagram

Always measure clockwise

0

A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from the starting point? Law of 30 Cosines $50^{\circ}60^{\circ}$ 60 45 ${\mathcal X}$ $(OPP)^{2} = (ADJ_{1})^{2} + (ADJ_{2})^{2} - 2(ADJ_{1})(ADJ_{2})\cos(\angle)$

Which direction?

• In surveying, a compass reading is usually given as an acute angle from the north-south line toward the east or west line.

a) Start on the yaxis.
b) Clockwise
c) The angle is always acute.

In surveying, a compass reading is usually given as an acute \angle from the north-south line toward the east or west.

Navigation -

Surveying

Azimuths

NE Sandy and NE 40th meet at approx 58 degree angle.

Give directions from the Formation Area to the disband Area. a) Using navigation system. b) Using the survey method.

Basic Hints and rules

- Make a diagram... give yourself drawing space *all* around the diagram.
- Although drawing to scale might be hard, come as close to a scale as possible.
- Write all the given information on your diagram.

Basic Hints and rules

- Include a lightly drawn x and y axes at each point.
- Find as many angles and sides as you can.
- Apply as many geometry rules as you can.

Camping:

Give direction from the camp site to each of 4 points of interest: Generate claritying questions!

a) The river b) The lake c) To the tower d) The hill

Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

With these types of problems, a careful diagram is essential. Next slide will demonstrate all the steps. Make sure to have your geometric tools and math wits about you!

A plot of land is taxed according to its area. Sketch the plot of land described, then find its area. $k = \frac{1}{2}ab\sin C$ From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

 $d^{2} =$

Area ≈

260 m SW;

Presentation

Presentation

$$(d_3)^2 =$$

 $K_1 + K_2 \approx$

click here for a sample test

Homework:

• Sec 9.5 written exercises • 7-13 odds; 15, 16, 17

In class Exit Slip:

- Page 353 Problem #17.
- Only full solutions will be considered.

If you were absent, see Navi for make up Exit Slip.

Applications of Trig to Navigation and Surveying

The course of a ship or plane is the angle, measured clockwise, from the north direction to the direction of the ship or plane.

course of ship = 110°

course of plane = 270°

As shown, the compass bearing of one location from another is measured in the same way. Note that compass bearings and courses are given with three digits, such as 060° rather than 60°

bearing of *B* from $A = 060^{\circ}$ bearing of *A* from $B = 240^{\circ}$

Example 1. A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?

Example 1. A ship proceeds on a course of 300° for 2 hours at a speed of 15 knots (1 knot = 1 nautical mile per hour). Then it changes course to 230°, continuing at 15 knots for 3 more hours. At that time, how far is the ship from its starting point?

went to up at at at a

.30

2309

60

50° 60°

ship's starting

point

300°

Make a diagram

The ship travels first along a path of length $2 \cdot 15 = 30$ nautical miles and then along a path of length $3 \cdot 15 = 45$ nautical miles. The angle between the two paths is 110° . (You can find this angle by drawing north-south lines and using geometry.) To find x, the distance of the ship from its starting point, use the law of cosines:

$$x^2 = 30^2 + 45^2 - 2 \cdot 30 \cdot 45 \cdot \cos 110^\circ \approx 3848$$

Thus, $x \approx \sqrt{3848} \approx 62.0$ nautical miles.

Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

From the bearings given, we deduce that:

Example 2. Very often a plot of land is taxed according to its area. Sketch the plot of land described. Then find its area.

From a granite post, proceed 195 ft east along Tasker Hill Road, then along a bearing of S32°E for 260 ft, then along a bearing of S68°W for 385 ft, and finally along a line back to the granite post.

From the bearings given, we deduce that:

